X
يوجد سباق مفتوح, هل تريد الانضمام ؟
الصف الثالث ثانوي
القطوع المخروطية
القطوع والدوائر الناقصة
لم تقم بتسجيل الدخول, بعض الخصائص غير مفعلة.
أنت في المستوى
المبتدئ
المتوسط
المتقدم
نتيجتك:
0
زمن الاجابة:
0
0
ترتيبي الأسبوعي
0
حدد خصائص القطع الناقص الذي معادلته :
25
x
2
+16
y
2
+
100
x
+
96
y
-
1356
=
0
MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaaisdacaWG4b WaaWbaaSqabeaacaaIYaaaaOGaey4kaSIaamyEamaaCaaaleqabaGa aGOmaaaakiabgkHiTiaaiAdacaaI0aGaamiEaiabgkHiTiaaigdaca aIYaGaamyEaiabgUcaRiaaikdacaaI3aGaaGOnaiabg2da9iaaicda aaa@4715@
الاتجاه
المركز
البؤرتان
الرأسان
الرأسان المرافقان
المحورالأكبر
المحورالأصغر
رأسي
(
2
,
3
)
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiabgkHiTiaaisdacqGHRaWkdaGcaaqaaiaaiwdaaSqabaGccaGGSaGaeyOeI0IaaG4maiaacMcacaGGSaGaaiikaiabgkHiTiaaisdacqGHsisldaGcaaqaaiaaiwdaaSqabaGccaGGSaGaeyOeI0IaaG4maiaacMcaaaa@44A8@
(
2,−3
)
,
(
2
,
9
)
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiabgkHiTiaaikdacaGGSaGaaGOmamaakaaabaGaaGymaiaaicdaaSqabaGccaGGPaGaaiilaiaacIcacqGHsislcaaIYaGaaiilaiabgkHiTiaaikdadaGcaaqaaiaaigdacaaIWaaaleqaaOGaaiykaaaa@4352@
(
2
,
13
)
,
( 2
,
−7
)
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiabgkHiTiaaisdacqGHRaWkdaGcaaqaaiaaiwdaaSqabaGccaGGSaGaeyOeI0IaaG4maiaacMcacaGGSaGaaiikaiabgkHiTiaaisdacqGHsisldaGcaaqaaiaaiwdaaSqabaGccaGGSaGaeyOeI0IaaG4maiaacMcaaaa@44A8@
(−6
,
3
)
,
(10
,3
)
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiabgkHiTiaaisdacqGHRaWkdaGcaaqaaiaaiwdaaSqabaGccaGGSaGaeyOeI0IaaG4maiaacMcacaGGSaGaaiikaiabgkHiTiaaisdacqGHsisldaGcaaqaaiaaiwdaaSqabaGccaGGSaGaeyOeI0IaaG4maiaacMcaaaa@44A8@
x
=2
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEaiabg2da9iaadUgaaaa@3899@
y
=
3
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEaiabg2da9iaadUgaaaa@3899@
الاتجاه
المركز
البؤرتان
الرأسان
الرأسان المرافقان
المحورالأكبر
المحورالأصغر
رأسي
(
−2
,
−3
)
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiabgkHiTiaaisdacqGHRaWkdaGcaaqaaiaaiwdaaSqabaGccaGGSaGaeyOeI0IaaG4maiaacMcacaGGSaGaaiikaiabgkHiTiaaisdacqGHsisldaGcaaqaaiaaiwdaaSqabaGccaGGSaGaeyOeI0IaaG4maiaacMcaaaa@44A8@
(
−2,3
)
,
(
−2
,
−9
)
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiabgkHiTiaaikdacaGGSaGaaGOmamaakaaabaGaaGymaiaaicdaaSqabaGccaGGPaGaaiilaiaacIcacqGHsislcaaIYaGaaiilaiabgkHiTiaaikdadaGcaaqaaiaaigdacaaIWaaaleqaaOGaaiykaaaa@4352@
(
−2
,
7
)
,
(−2
,
−13
)
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiabgkHiTiaaisdacqGHRaWkdaGcaaqaaiaaiwdaaSqabaGccaGGSaGaeyOeI0IaaG4maiaacMcacaGGSaGaaiikaiabgkHiTiaaisdacqGHsisldaGcaaqaaiaaiwdaaSqabaGccaGGSaGaeyOeI0IaaG4maiaacMcaaaa@44A8@
(6
,
−3
)
,
(−10
,−3
)
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiabgkHiTiaaisdacqGHRaWkdaGcaaqaaiaaiwdaaSqabaGccaGGSaGaeyOeI0IaaG4maiaacMcacaGGSaGaaiikaiabgkHiTiaaisdacqGHsisldaGcaaqaaiaaiwdaaSqabaGccaGGSaGaeyOeI0IaaG4maiaacMcaaaa@44A8@
x
=−2
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEaiabg2da9iaadUgaaaa@3899@
y
=
−3
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEaiabg2da9iaadUgaaaa@3899@
الاتجاه
المركز
البؤرتان
الرأسان
الرأسان المرافقان
المحورالأكبر
المحورالأصغر
أفقي
(
−2
,
−3
)
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiabgkHiTiaaisdacqGHRaWkdaGcaaqaaiaaiwdaaSqabaGccaGGSaGaeyOeI0IaaG4maiaacMcacaGGSaGaaiikaiabgkHiTiaaisdacqGHsisldaGcaaqaaiaaiwdaaSqabaGccaGGSaGaeyOeI0IaaG4maiaacMcaaaa@44A8@
(4
,−3
)
,
(
−8
,
−3
)
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiabgkHiTiaaikdacaGGSaGaaGOmamaakaaabaGaaGymaiaaicdaaSqabaGccaGGPaGaaiilaiaacIcacqGHsislcaaIYaGaaiilaiabgkHiTiaaikdadaGcaaqaaiaaigdacaaIWaaaleqaaOGaaiykaaaa@4352@
(8
,
−3
)
,
(−12
,
−3
)
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiabgkHiTiaaisdacqGHRaWkdaGcaaqaaiaaiwdaaSqabaGccaGGSaGaeyOeI0IaaG4maiaacMcacaGGSaGaaiikaiabgkHiTiaaisdacqGHsisldaGcaaqaaiaaiwdaaSqabaGccaGGSaGaeyOeI0IaaG4maiaacMcaaaa@44A8@
(−2
,5
)
,
(−2
,−11
)
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiabgkHiTiaaisdacqGHRaWkdaGcaaqaaiaaiwdaaSqabaGccaGGSaGaeyOeI0IaaG4maiaacMcacaGGSaGaaiikaiabgkHiTiaaisdacqGHsisldaGcaaqaaiaaiwdaaSqabaGccaGGSaGaeyOeI0IaaG4maiaacMcaaaa@44A8@
y
=−2
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEaiabg2da9iaadUgaaaa@3899@
x
=
−3
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEaiabg2da9iaadUgaaaa@3899@
الاتجاه
المركز
البؤرتان
الرأسان
الرأسان المرافقان
المحورالأكبر
المحورالأصغر
أفقي
(
3
,−
5
)
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiabgkHiTiaaisdacqGHRaWkdaGcaaqaaiaaiwdaaSqabaGccaGGSaGaeyOeI0IaaG4maiaacMcacaGGSaGaaiikaiabgkHiTiaaisdacqGHsisldaGcaaqaaiaaiwdaaSqabaGccaGGSaGaeyOeI0IaaG4maiaacMcaaaa@44A8@
(
7,−5
)
,
(
−1
,
−5
)
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiabgkHiTiaaikdacaGGSaGaaGOmamaakaaabaGaaGymaiaaicdaaSqabaGccaGGPaGaaiilaiaacIcacqGHsislcaaIYaGaaiilaiabgkHiTiaaikdadaGcaaqaaiaaigdacaaIWaaaleqaaOGaaiykaaaa@4352@
(
8
,
−5
)
,
(−2
,
−5
)
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiabgkHiTiaaisdacqGHRaWkdaGcaaqaaiaaiwdaaSqabaGccaGGSaGaeyOeI0IaaG4maiaacMcacaGGSaGaaiikaiabgkHiTiaaisdacqGHsisldaGcaaqaaiaaiwdaaSqabaGccaGGSaGaeyOeI0IaaG4maiaacMcaaaa@44A8@
(3
,−8
)
,
(3
,−2
)
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiabgkHiTiaaisdacqGHRaWkdaGcaaqaaiaaiwdaaSqabaGccaGGSaGaeyOeI0IaaG4maiaacMcacaGGSaGaaiikaiabgkHiTiaaisdacqGHsisldaGcaaqaaiaaiwdaaSqabaGccaGGSaGaeyOeI0IaaG4maiaacMcaaaa@44A8@
x
=3
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEaiabg2da9iaadUgaaaa@3899@
y
=−
5
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEaiabg2da9iaadUgaaaa@3899@
0