X
يوجد سباق مفتوح, هل تريد الانضمام ؟
الصف الثالث ثانوي
القطوع المخروطية
القطوع والدوائر الناقصة
لم تقم بتسجيل الدخول, بعض الخصائص غير مفعلة.
أنت في المستوى
المبتدئ
المتوسط
المتقدم
نتيجتك:
0
زمن الاجابة:
0
0
ترتيبي الأسبوعي
0
حدد خصائص القطع الناقص الذي معادلته :
(
x
−
6
)
2
9
+
(
y
+
3
)
2
16
=
1
MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaada qadaqaaiaadIhacqGHsislcaaI2aaacaGLOaGaayzkaaWaaWbaaSqa beaacaaIYaaaaaGcbaGaaGyoaaaacqGHRaWkdaWcaaqaamaabmaaba GaamyEaiabgUcaRiaaiodaaiaawIcacaGLPaaadaahaaWcbeqaaiaa ikdaaaaakeaacaaIXaGaaGOnaaaacqGH9aqpcaaIXaaaaa@4536@
الاتجاه
المركز
البؤرتان
الرأسان
الرأسان المرافقان
المحورالأكبر
المحورالأصغر
رأسي
(
6
,
3
)
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiabgkHiTiaaisdacqGHRaWkdaGcaaqaaiaaiwdaaSqabaGccaGGSaGaeyOeI0IaaG4maiaacMcacaGGSaGaaiikaiabgkHiTiaaisdacqGHsisldaGcaaqaaiaaiwdaaSqabaGccaGGSaGaeyOeI0IaaG4maiaacMcaaaa@44A8@
(
6
,
−3+
7
)
,
(
6
,
−
3−
7
)
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiabgkHiTiaaikdacaGGSaGaaGOmamaakaaabaGaaGymaiaaicdaaSqabaGccaGGPaGaaiilaiaacIcacqGHsislcaaIYaGaaiilaiabgkHiTiaaikdadaGcaaqaaiaaigdacaaIWaaaleqaaOGaaiykaaaa@4352@
(
6
,
1
)
,
(
6
,
−
7
)
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiabgkHiTiaaisdacqGHRaWkdaGcaaqaaiaaiwdaaSqabaGccaGGSaGaeyOeI0IaaG4maiaacMcacaGGSaGaaiikaiabgkHiTiaaisdacqGHsisldaGcaaqaaiaaiwdaaSqabaGccaGGSaGaeyOeI0IaaG4maiaacMcaaaa@44A8@
(
9
,
3
)
,
(
3
,
3
)
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiabgkHiTiaaisdacqGHRaWkdaGcaaqaaiaaiwdaaSqabaGccaGGSaGaeyOeI0IaaG4maiaacMcacaGGSaGaaiikaiabgkHiTiaaisdacqGHsisldaGcaaqaaiaaiwdaaSqabaGccaGGSaGaeyOeI0IaaG4maiaacMcaaaa@44A8@
x
=
6
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEaiabg2da9iaadUgaaaa@3899@
y
=
3
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEaiabg2da9iaadUgaaaa@3899@
الاتجاه
المركز
البؤرتان
الرأسان
الرأسان المرافقان
المحورالأكبر
المحورالأصغر
رأسي
(
3
,
−3
)
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiabgkHiTiaaisdacqGHRaWkdaGcaaqaaiaaiwdaaSqabaGccaGGSaGaeyOeI0IaaG4maiaacMcacaGGSaGaaiikaiabgkHiTiaaisdacqGHsisldaGcaaqaaiaaiwdaaSqabaGccaGGSaGaeyOeI0IaaG4maiaacMcaaaa@44A8@
(
3
,
−3+
7
)
,
(
3
,
−
3−
7
)
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiabgkHiTiaaikdacaGGSaGaaGOmamaakaaabaGaaGymaiaaicdaaSqabaGccaGGPaGaaiilaiaacIcacqGHsislcaaIYaGaaiilaiabgkHiTiaaikdadaGcaaqaaiaaigdacaaIWaaaleqaaOGaaiykaaaa@4352@
(
3
,
1
)
,
(
3
,
−
7
)
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiabgkHiTiaaisdacqGHRaWkdaGcaaqaaiaaiwdaaSqabaGccaGGSaGaeyOeI0IaaG4maiaacMcacaGGSaGaaiikaiabgkHiTiaaisdacqGHsisldaGcaaqaaiaaiwdaaSqabaGccaGGSaGaeyOeI0IaaG4maiaacMcaaaa@44A8@
(
9
,
−3
)
,
(
3
,
−3
)
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiabgkHiTiaaisdacqGHRaWkdaGcaaqaaiaaiwdaaSqabaGccaGGSaGaeyOeI0IaaG4maiaacMcacaGGSaGaaiikaiabgkHiTiaaisdacqGHsisldaGcaaqaaiaaiwdaaSqabaGccaGGSaGaeyOeI0IaaG4maiaacMcaaaa@44A8@
x
=
3
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEaiabg2da9iaadUgaaaa@3899@
y
=
-
3
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEaiabg2da9iaadUgaaaa@3899@
الاتجاه
المركز
البؤرتان
الرأسان
الرأسان المرافقان
المحورالأكبر
المحورالأصغر
رأسي
(
6
,
−3
)
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiabgkHiTiaaisdacqGHRaWkdaGcaaqaaiaaiwdaaSqabaGccaGGSaGaeyOeI0IaaG4maiaacMcacaGGSaGaaiikaiabgkHiTiaaisdacqGHsisldaGcaaqaaiaaiwdaaSqabaGccaGGSaGaeyOeI0IaaG4maiaacMcaaaa@44A8@
(
6
,
−3+
7
)
,
(
6
,
−
3−
7
)
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiabgkHiTiaaikdacaGGSaGaaGOmamaakaaabaGaaGymaiaaicdaaSqabaGccaGGPaGaaiilaiaacIcacqGHsislcaaIYaGaaiilaiabgkHiTiaaikdadaGcaaqaaiaaigdacaaIWaaaleqaaOGaaiykaaaa@4352@
(
6
,
1
)
,
(
6
,
−
7
)
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiabgkHiTiaaisdacqGHRaWkdaGcaaqaaiaaiwdaaSqabaGccaGGSaGaeyOeI0IaaG4maiaacMcacaGGSaGaaiikaiabgkHiTiaaisdacqGHsisldaGcaaqaaiaaiwdaaSqabaGccaGGSaGaeyOeI0IaaG4maiaacMcaaaa@44A8@
(
9
,
−3
)
,
(
3
,
−3
)
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiabgkHiTiaaisdacqGHRaWkdaGcaaqaaiaaiwdaaSqabaGccaGGSaGaeyOeI0IaaG4maiaacMcacaGGSaGaaiikaiabgkHiTiaaisdacqGHsisldaGcaaqaaiaaiwdaaSqabaGccaGGSaGaeyOeI0IaaG4maiaacMcaaaa@44A8@
x
=
6
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEaiabg2da9iaadUgaaaa@3899@
y
=
-
3
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEaiabg2da9iaadUgaaaa@3899@
الاتجاه
المركز
البؤرتان
الرأسان
الرأسان المرافقان
المحورالأكبر
المحورالأصغر
رأسي
(
6
,
−3
)
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiabgkHiTiaaisdacqGHRaWkdaGcaaqaaiaaiwdaaSqabaGccaGGSaGaeyOeI0IaaG4maiaacMcacaGGSaGaaiikaiabgkHiTiaaisdacqGHsisldaGcaaqaaiaaiwdaaSqabaGccaGGSaGaeyOeI0IaaG4maiaacMcaaaa@44A8@
(
6
,
−3+
15
)
,
(
6
,
−
3−
15
)
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiabgkHiTiaaikdacaGGSaGaaGOmamaakaaabaGaaGymaiaaicdaaSqabaGccaGGPaGaaiilaiaacIcacqGHsislcaaIYaGaaiilaiabgkHiTiaaikdadaGcaaqaaiaaigdacaaIWaaaleqaaOGaaiykaaaa@4352@
(
6
,
1
)
,
(
6
,
−
7
)
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiabgkHiTiaaisdacqGHRaWkdaGcaaqaaiaaiwdaaSqabaGccaGGSaGaeyOeI0IaaG4maiaacMcacaGGSaGaaiikaiabgkHiTiaaisdacqGHsisldaGcaaqaaiaaiwdaaSqabaGccaGGSaGaeyOeI0IaaG4maiaacMcaaaa@44A8@
(
9
,
−3
)
,
(
3
,
−3
)
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiabgkHiTiaaisdacqGHRaWkdaGcaaqaaiaaiwdaaSqabaGccaGGSaGaeyOeI0IaaG4maiaacMcacaGGSaGaaiikaiabgkHiTiaaisdacqGHsisldaGcaaqaaiaaiwdaaSqabaGccaGGSaGaeyOeI0IaaG4maiaacMcaaaa@44A8@
x
=
6
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEaiabg2da9iaadUgaaaa@3899@
y
=
-
3
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEaiabg2da9iaadUgaaaa@3899@
0