X
يوجد سباق مفتوح, هل تريد الانضمام ؟
الصف الثالث ثانوي
القطوع المخروطية
القطوع والدوائر الناقصة
لم تقم بتسجيل الدخول, بعض الخصائص غير مفعلة.
أنت في المستوى
المبتدئ
المتوسط
المتقدم
نتيجتك:
0
زمن الاجابة:
0
0
ترتيبي الأسبوعي
0
حدد خصائص القطع الناقص الذي معادلته :
(
x
−
3
)
2
64
+
(
y
−
2
)
2
49
=
1
MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca GGOaGaamiEaiabgkHiTiaaiodacaGGPaWaaWbaaSqabeaacaaIYaaa aaGcbaGaaGOnaiaaisdaaaGaey4kaSYaaSaaaeaacaGGOaGaamyEai abgkHiTiaaikdacaGGPaWaaWbaaSqabeaacaaIYaaaaaGcbaGaaGin aiaaiIdaaaGaeyypa0JaaGymaaaa@454E@
الاتجاه
المركز
البؤرتان
الرأسان
الرأسان المرافقان
المحورالأكبر
المحورالأصغر
أفقي
(
3
,
2
)
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiabgkHiTiaaisdacqGHRaWkdaGcaaqaaiaaiwdaaSqabaGccaGGSaGaeyOeI0IaaG4maiaacMcacaGGSaGaaiikaiabgkHiTiaaisdacqGHsisldaGcaaqaaiaaiwdaaSqabaGccaGGSaGaeyOeI0IaaG4maiaacMcaaaa@44A8@
(
3
+
15
,2
)
,
(
3
−
15
,
2
)
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiabgkHiTiaaisdacqGHRaWkdaGcaaqaaiaaiwdaaSqabaGccaGGSaGaeyOeI0IaaG4maiaacMcacaGGSaGaaiikaiabgkHiTiaaisdacqGHsisldaGcaaqaaiaaiwdaaSqabaGccaGGSaGaeyOeI0IaaG4maiaacMcaaaa@44A8@
(
11
,
2
)
,
(
−
5
,
2
)
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiabgkHiTiaaisdacqGHRaWkdaGcaaqaaiaaiwdaaSqabaGccaGGSaGaeyOeI0IaaG4maiaacMcacaGGSaGaaiikaiabgkHiTiaaisdacqGHsisldaGcaaqaaiaaiwdaaSqabaGccaGGSaGaeyOeI0IaaG4maiaacMcaaaa@44A8@
(
3
,
9
)
,
(
3
,
−
5
)
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiabgkHiTiaaisdacqGHRaWkdaGcaaqaaiaaiwdaaSqabaGccaGGSaGaeyOeI0IaaG4maiaacMcacaGGSaGaaiikaiabgkHiTiaaisdacqGHsisldaGcaaqaaiaaiwdaaSqabaGccaGGSaGaeyOeI0IaaG4maiaacMcaaaa@44A8@
y
=
2
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabg2da9iabgkHiTiaaisdaaaa@3953@
x
=
3
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabg2da9iabgkHiTiaaisdaaaa@3953@
الاتجاه
المركز
البؤرتان
الرأسان
الرأسان المرافقان
المحورالأكبر
المحورالأصغر
أفقي
(
3
,
2
)
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiabgkHiTiaaisdacqGHRaWkdaGcaaqaaiaaiwdaaSqabaGccaGGSaGaeyOeI0IaaG4maiaacMcacaGGSaGaaiikaiabgkHiTiaaisdacqGHsisldaGcaaqaaiaaiwdaaSqabaGccaGGSaGaeyOeI0IaaG4maiaacMcaaaa@44A8@
(
3
+
15
,2
)
,
(
3
−
15
,
2
)
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiabgkHiTiaaisdacqGHRaWkdaGcaaqaaiaaiwdaaSqabaGccaGGSaGaeyOeI0IaaG4maiaacMcacaGGSaGaaiikaiabgkHiTiaaisdacqGHsisldaGcaaqaaiaaiwdaaSqabaGccaGGSaGaeyOeI0IaaG4maiaacMcaaaa@44A8@
(
11
,
2
)
,
(
−
5
,
2
)
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiabgkHiTiaaisdacqGHRaWkdaGcaaqaaiaaiwdaaSqabaGccaGGSaGaeyOeI0IaaG4maiaacMcacaGGSaGaaiikaiabgkHiTiaaisdacqGHsisldaGcaaqaaiaaiwdaaSqabaGccaGGSaGaeyOeI0IaaG4maiaacMcaaaa@44A8@
(
3
,
9
)
,
(
3
,
−
5
)
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiabgkHiTiaaisdacqGHRaWkdaGcaaqaaiaaiwdaaSqabaGccaGGSaGaeyOeI0IaaG4maiaacMcacaGGSaGaaiikaiabgkHiTiaaisdacqGHsisldaGcaaqaaiaaiwdaaSqabaGccaGGSaGaeyOeI0IaaG4maiaacMcaaaa@44A8@
y
=
-2
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabg2da9iabgkHiTiaaisdaaaa@3953@
x
=
3
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabg2da9iabgkHiTiaaisdaaaa@3953@
الاتجاه
المركز
البؤرتان
الرأسان
الرأسان المرافقان
المحورالأكبر
المحورالأصغر
أفقي
(
3
,
2
)
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiabgkHiTiaaisdacqGHRaWkdaGcaaqaaiaaiwdaaSqabaGccaGGSaGaeyOeI0IaaG4maiaacMcacaGGSaGaaiikaiabgkHiTiaaisdacqGHsisldaGcaaqaaiaaiwdaaSqabaGccaGGSaGaeyOeI0IaaG4maiaacMcaaaa@44A8@
(
3
+
15
,2
)
,
(
3
−
15
,
2
)
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiabgkHiTiaaisdacqGHRaWkdaGcaaqaaiaaiwdaaSqabaGccaGGSaGaeyOeI0IaaG4maiaacMcacaGGSaGaaiikaiabgkHiTiaaisdacqGHsisldaGcaaqaaiaaiwdaaSqabaGccaGGSaGaeyOeI0IaaG4maiaacMcaaaa@44A8@
(
11
,
2
)
,
(
−
5
,
2
)
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiabgkHiTiaaisdacqGHRaWkdaGcaaqaaiaaiwdaaSqabaGccaGGSaGaeyOeI0IaaG4maiaacMcacaGGSaGaaiikaiabgkHiTiaaisdacqGHsisldaGcaaqaaiaaiwdaaSqabaGccaGGSaGaeyOeI0IaaG4maiaacMcaaaa@44A8@
(
3
,
7
)
,
(
3
,
−
2
)
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiabgkHiTiaaisdacqGHRaWkdaGcaaqaaiaaiwdaaSqabaGccaGGSaGaeyOeI0IaaG4maiaacMcacaGGSaGaaiikaiabgkHiTiaaisdacqGHsisldaGcaaqaaiaaiwdaaSqabaGccaGGSaGaeyOeI0IaaG4maiaacMcaaaa@44A8@
y
=
2
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabg2da9iabgkHiTiaaisdaaaa@3953@
x
=
3
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabg2da9iabgkHiTiaaisdaaaa@3953@
الاتجاه
المركز
البؤرتان
الرأسان
الرأسان المرافقان
المحورالأكبر
المحورالأصغر
أفقي
(
3
,
2
)
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiabgkHiTiaaisdacqGHRaWkdaGcaaqaaiaaiwdaaSqabaGccaGGSaGaeyOeI0IaaG4maiaacMcacaGGSaGaaiikaiabgkHiTiaaisdacqGHsisldaGcaaqaaiaaiwdaaSqabaGccaGGSaGaeyOeI0IaaG4maiaacMcaaaa@44A8@
(
3
+
15
,2
)
,
(
3
−
15
,
2
)
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiabgkHiTiaaisdacqGHRaWkdaGcaaqaaiaaiwdaaSqabaGccaGGSaGaeyOeI0IaaG4maiaacMcacaGGSaGaaiikaiabgkHiTiaaisdacqGHsisldaGcaaqaaiaaiwdaaSqabaGccaGGSaGaeyOeI0IaaG4maiaacMcaaaa@44A8@
(
12
,
2
)
,
(
−
4
,
2
)
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiabgkHiTiaaisdacqGHRaWkdaGcaaqaaiaaiwdaaSqabaGccaGGSaGaeyOeI0IaaG4maiaacMcacaGGSaGaaiikaiabgkHiTiaaisdacqGHsisldaGcaaqaaiaaiwdaaSqabaGccaGGSaGaeyOeI0IaaG4maiaacMcaaaa@44A8@
(
3
,
9
)
,
(
3
,
−
5
)
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiabgkHiTiaaisdacqGHRaWkdaGcaaqaaiaaiwdaaSqabaGccaGGSaGaeyOeI0IaaG4maiaacMcacaGGSaGaaiikaiabgkHiTiaaisdacqGHsisldaGcaaqaaiaaiwdaaSqabaGccaGGSaGaeyOeI0IaaG4maiaacMcaaaa@44A8@
y
=
2
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabg2da9iabgkHiTiaaisdaaaa@3953@
x
=
3
MathType@MTEF@5@5@+=feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4HqaqFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabg2da9iabgkHiTiaaisdaaaa@3953@
0